PHROG: A Multimodal Feature for Place Recognition

نویسندگان

  • Fabien Bonardi
  • Samia Ainouz
  • Rémi Boutteau
  • Yohan Dupuis
  • Xavier Savatier
  • Pascal Vasseur
چکیده

Long-term place recognition in outdoor environments remains a challenge due to high appearance changes in the environment. The problem becomes even more difficult when the matching between two scenes has to be made with information coming from different visual sources, particularly with different spectral ranges. For instance, an infrared camera is helpful for night vision in combination with a visible camera. In this paper, we emphasize our work on testing usual feature point extractors under both constraints: repeatability across spectral ranges and long-term appearance. We develop a new feature extraction method dedicated to improve the repeatability across spectral ranges. We conduct an evaluation of feature robustness on long-term datasets coming from different imaging sources (optics, sensors size and spectral ranges) with a Bag-of-Words approach. The tests we perform demonstrate that our method brings a significant improvement on the image retrieval issue in a visual place recognition context, particularly when there is a need to associate images from various spectral ranges such as infrared and visible: we have evaluated our approach using visible, Near InfraRed (NIR), Short Wavelength InfraRed (SWIR) and Long Wavelength InfraRed (LWIR).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition

Here, we develop an audiovisual deep residual network for multimodal apparent personality trait recognition. The network is trained end-to-end for predicting the Big Five personality traits of people from their videos. That is, the network does not require any feature engineering or visual analysis such as face detection, face landmark alignment or facial expression recognition. Recently, the n...

متن کامل

Robust Multimodal Sequence-Based Loop Closure Detection via Structured Sparsity

Loop closure detection is an essential component for simultaneously localization and mapping in a variety of robotics applications. One of the most challenging problems is to perform long-term place recognition with strong perceptual aliasing and appearance variations due to changes of illumination, vegetation, weather, etc. To address this challenge, we propose a novel Robust Multimodal Sequen...

متن کامل

A Supervised Combined Feature Extraction Method for Recognition

Multimodal recognition is an emerging technique to overcome the non-robustness of the unimodal recognition in real applications. Canonical correlation analysis (CCA) has been employed as a powerful tool for feature fusion in the realization of such multimodal system. However, CCA is the unsupervised feature extraction and it does not utilize the class information of the samples, resulting in th...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Multimodal Recognition Method based on Ear and Profile Face Feature Fusion

The performance of ear recognition is influenced by pose variation. For the similar position of ear and profile face, a multimodal recognition method is proposed based on the feature fusion of ear and profile face information. A model for ear and profile face feature fusion and recognition is built. The Log-Gabor features of ear and profile face are first extracted separately, and two features ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017